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Abstract—Resource provisioning and task scheduling in Cloud
environments are quite challenging because of the fluctuating
workload patterns and of the unpredictable behaviors and
unstable performance of the infrastructure. It is therefore im-
portant to properly master the uncertainties associated with
Cloud workloads and infrastructures. In this paper, we propose
a probabilistic approach for resource provisioning and task
scheduling that allows users to estimate in advance, i.e., offline,
the resources to be provisioned, thus reducing the risk and the
impact of overprovisioning or underprovisioning. In particular,
we formulate an optimization problem whose objective is to
identify scheduling plans that minimize the overall monetary cost
for leasing Cloud resources subject to some workload constraints.
This cost-aware model ensures that the execution time of an
application does not exceed with a given probability a specified
deadline, even in presence of uncertainties. To evaluate the be-
havior and sensitivity to uncertainties of the proposed approach,
we simulate a batch workload consisting of MapReduce jobs.
The experimental results show that, despite the provisioning
and scheduling approaches that do not take into account the
uncertainties in their decision process, our probabilistic approach
nicely adapts to workload and Cloud uncertainties.

Keywords: Cloud computing; Resource provisioning; Task
scheduling; Uncertainty; Probabilistic approach; MapReduce
workload; CloudSim

I. INTRODUCTION

Cloud computing with its promise of lower cost and better
efficiency – exploited through features, such as on demand,
pay-per-use, elasticity – opens challenging issues related to
resource management and provisioning. Cloud providers are
interested in maximizing their profit, often achieved by consol-
idation policies that maximize their resource utilization. Con-
versely, Cloud users are primarily interested in identifying the
most cost-effective infrastructure for successfully deploying
their applications in Cloud or multi-cloud environments.

In these complex scenarios, the estimation of the resources
actually needed by a given application is quite difficult be-
cause of the presence of fluctuating workload patterns as
well as of heterogeneous virtualized Cloud infrastructures
characterized by some unpredictable behaviors and unstable
performance [1]. For example, multi-tenant resource sharing,
failures and Virtual Machine (VM) migration and consol-
idation could lead to the creation of sudden performance
bottlenecks that, in turn, are often responsible of significant

performance degradation. It is therefore important to properly
master the “uncertainties” associated with Cloud workloads
and infrastructures.

This paper addresses these issues by proposing a probabilis-
tic approach for resource provisioning and task scheduling.
Our objective is to devise a cost-aware model that identifies
for a given application a cost-effective setting, i.e., amount and
types of Cloud resources and corresponding scheduling plan.
The model will ensure that the execution time of the applica-
tion does not exceed with a given probability a specified value,
i.e., deadline, even in presence of variability and uncertainties.

More specifically, the model is formulated as an optimiza-
tion problem whose objective is to minimize the overall mon-
etary cost for leasing Cloud resources subject to constraints
related, for example, to application structure and execution
time.

This model will allow users to estimate in advance, i.e.,
offline, the resources to be provisioned, thus reducing the
risk and the impact of overprovisioning or underprovisioning.
In fact, overprovisioning results in unnecessary costs due to
unused resources. Similarly, an increased cost is also the result
of insufficient resource provision since on-demand Cloud
instances are in general more expensive than their reserved
counterparts (up to 75% for Amazon EC2). The evaluation of
the proposed approach is performed on a case study based on
a MapReduce workload.

The main contributions of this paper can be summarized as
follows:

• Probabilistic approach for resource provisioning and task
scheduling.

• Formulation of an optimization problem that adapts to
workload and Cloud uncertainties.

• Extensions of the CloudSim toolkit to simulate uncertain-
ties.

The paper is organized as follows. Section II presents
the state of the art in the framework of provisioning and
scheduling in Cloud environments. The cost-aware model is
described in Section III, while its application to MapReduce
workloads is presented in Section IV. The evaluation of the
proposed model is discussed in Section V. Finally, Section VI
presents some concluding remarks.



II. RELATED WORK

Cloud resource provisioning and scheduling have been
addressed in the literature under different perspectives by con-
sidering different workload types. In particular, MapReduce
workloads have been the target of several studies. In [2] the
resource allocation is formulated as an optimization problem
based on a cost model that takes into account the relationships
among amount of input data, available system resources and
complexity of the application components. Two VM provi-
sioning approaches aimed at minimizing the cost for running
MapReduce applications under deadline constraints are pro-
posed in [3]. Resource provisioning and task scheduling in
heterogeneous Cloud environments are addressed in [4] in the
framework of big data analytics. The proposed algorithms aim
at minimizing the cost as a function of the budget and deadline
constraints associated with MapReduce applications. Resource
provisioning and scheduling for batch workloads with hard
deadlines are addressed in [5] as an optimization problem with
a linear programming formulation. The paper shows that cost-
optimization techniques are particularly suitable for multi-
provider hybrid Cloud settings.

A recent study [6] offers a comprehensive survey of work-
flow scheduling in Cloud environments in the framework of
a taxonomy based on the knowledge of workflow properties
(e.g., structure, execution time) and resource characteristics.

Even though many studies acknowledge the variability and
performance instability affecting Cloud environments (see [7]
for a classification of these uncertainties), very few studies
explicitly consider these effects in the formulation of the
provisioning and scheduling problems. The combined pro-
visioning and scheduling strategy for scientific workflows
presented in [8] models Cloud performance and data transfer
variations by adjusting processing capacity and bandwidth
according to a degradation percentage reported in [9]. The
uncertainty associated with resource demand and pricing in
multi-cloud environments is taken into account in the resource
provisioning algorithm proposed by Chaisiri et al. [10]. The
algorithm – formulated as a stochastic programming problem
– minimizes the provisioning costs by adjusting the trade-off
between resource reservation and on-demand allocation.

Despite previous studies, the approach proposed in this
paper models the variability of the workload characteristics
as well as the instability of Cloud performance in terms
of probabilistic distributions. Therefore, these uncertainties
are considered as an integral part of the decisions about
provisioning and scheduling.

III. COST-AWARE MODEL

As already pointed out, the estimation of the resources
needed by the applications deployed in the Clouds has to
take into account the performance instability that might affect
the infrastructure as well as the variability in the workload
behavior. The cost-aware model presented in this paper tries
to cope with these issues by adopting a probabilistic approach
to the provisioning and scheduling problem. The goal of the
model is to minimize the deployment cost and satisfy at the
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Fig. 1. Representation of a job consisting of tasks with precedence con-
straints (a) and mapping of the tasks on two VMs (b).

same time possible workload constraints. In what follows, we
define in detail the formulation of this optimization problem
and present the methods devised for obtaining an efficient
solution.

A. Problem definition

Given a workload (i.e., jobs consisting of tasks with prece-
dence constraints, as depicted in Figure 1 (a)) to be deployed
on a Cloud (or multi-cloud) infrastructure (i.e., multiple in-
stances of different VM types interconnected together), our
goal is to provide Cloud users with a model that guides them
in their decisions on provisioning and scheduling, namely:
• Selection of the amount and types of resources (e.g.,

VMs) to be allocated to the jobs (provisioning phase);
• Mapping between the individual tasks and the selected

VMs (scheduling phase).
In this scenario, the decision process is particularly challenging
because of the potentially large number of choices. Hence,
we address this process as an optimization problem whose
objective is to minimize the total cost for leasing Cloud re-
sources and satisfy the probabilistic constraint on the deadline
associated with the job execution time. The formulation of the
problem is as follows:

minimize E [Cost]

subject to Pr(T ≤ d) ≥ (1− p)
task precedence constraints

(1)

where E [Cost] denotes the expected total cost for leasing
Cloud resources, d and p denote the deadline associated with
the job execution time T and the probability of deadline
violation, respectively.

The solution space of this combinatorial problem grows
exponentially with the number of tasks the job consists of
and the number and types of VMs the Cloud infrastructure
consists of. In particular, the expected cost depends on the
pricing of the Cloud resources as well as on job execution
time T and the overall resource usage. The execution time in
turn depends on the job and Cloud characteristics and on the
identified resource provisioning and task scheduling plan.

Therefore, it is necessary to derive an accurate estimation
of the execution time prior the job execution, that is, offline.
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This estimation has to take into account the variability and
uncertainties in the job characteristics and Cloud performance.
Hence, we describe the job and Cloud attributes in terms of
random variables with their probability distribution functions.
In particular, we assume that these distributions are obtained
by previous characterization studies of the workloads and of
the infrastructure.

Since we model the task execution times and the network
bandwidths as random variables, each described by its own
probability distribution, we derive the probability distribution
of the job execution time as a composition of these random
variables. Therefore, the probabilistic formulation of the opti-
mization problem requires the knowledge of the distributions
of these random variables.

As an illustrative example, we consider the job depicted in
Figure 1 (a) whose five tasks have been allocated to two of
the three available VMs, that is, three tasks (i.e., T1, T2 and
T4) to one VM and two tasks (i.e., T3 and T5) to another VM
(see Figure 1 (b)). To evaluate this scheduling plan, we derive
the random variable T describing the job execution time as:

T = max{T1 + T2, T3}+max{T4, T5}

where Ti’s denote the random variables referring to the exe-
cution times of tasks i.

B. Provisioning and scheduling

To identify the cheapest scheduling plan that satisfies the
given deadline constraint, a straightforward approach consists
of evaluating all possible mappings between tasks and VMs.
However, this approach becomes unfeasible for jobs with large
number of tasks especially whenever they are deployed in
multi-cloud environments. Therefore, as we will discuss in
Section IV, heuristic approaches are often applied.

C. Probabilistic evaluation

In order to solve the optimization problem formulated
in (1) and evaluate whether the scheduling plan satisfies
the constraint, we need to derive the cumulative distribution
function associated with T . This function is the result of the
combination of the probability distributions of the random
variables describing the task execution times. The combination
of these distributions is seldom analytically tractable. Even
for simple distributions, the analytic solution might be very
complex. For example, the cumulative distribution of the
execution time of two sequential tasks allocated on one VM
is obtained as the sum of the random variables describing the
execution times of the individual tasks, namely, T1 and T2.
The sum of these two random variables is computed as:

FT1+T2(t) = Pr(T1 + T2 ≤ t)

=

∫ +∞

−∞
FT1(x)fT2(t− x)dx

= (FT1 ∗ fT2)(t)

where FT1 and fT2 denote the cumulative distribution function
and probability density function of T1 and T2, respectively,

TABLE I
MAPREDUCE JOB MODEL NOTATIONS

Job model
Description Notation
Number of map tasks m
Number of reduce tasks r

Map task i = 1, . . . , m
Input data size (from the data source) δi
Number of instructions Li

Intermediate data size to reduce task j γi,j
Reduce task i = m+1, . . . , m+r

Number of instructions Li

while ∗ denotes the convolution product. For deriving nu-
merical solutions we resort to statistical computing techniques
based on spectral methods. This approach can be applied to
random variables described by either discrete or continuous
probability density functions.

IV. CASE STUDY

This section presents the case study implemented to evaluate
the proposed probabilistic approach to resource provisioning
and task scheduling. In particular, we focus on a batch work-
load consisting of MapReduce jobs [11], each characterized by
m map tasks and r reduce tasks whose precedence constraints
are such that no reduce task can start before all map tasks
have completed their execution.

A. MapReduce model

In our case study we model the entire execution of a
MapReduce job as consisting of two phases: a map phase
and a reduce phase. Note that the intermediate data shuffle is
considered as part of the map phase because a completed map
task can start transferring its intermediate data to reduce tasks
even before the completion of all the other map tasks.

In what follows, we assume a map task i, i = 1, 2, ...,m,
defined in terms of its input data size δi, length Li (i.e., number
of instructions to be executed), and intermediate data size γi,j
to be transferred to each reduce task j, j = m+ 1, ...,m+ r.
A reduce task j is defined in terms of its length Lj . Table I
summarizes the notations used throughout the rest of the paper.

B. Cloud model

In our case study, we consider MapReduce jobs deployed in
a multi-cloud environment consisting multiple resources (e.g.,
data sources, VMs, networks) with different performance and
pricing models.

In detail, each VM type – usually consisting of multiple
instances – is described by its speed sVM and leasing cost cexeVM.
Moreover, the characteristics of the networks between VMs are
specified in terms of their bandwidth BVM−VM and transfer
cost cnetVM. Similarly, the networks between data sources and
VMs are described in terms of bandwidth BDS−VM and the
transfer cost cDS. Note that this simplified model captures the
most relevant characteristics of the Cloud infrastructures and
as such it allows the assessment of the proposed probabilistic
approach.
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C. Variability

As already pointed out, variability and uncertainties are due
to workload and Cloud infrastructure behaviors. In our study
we choose to model the task length, i.e., a workload character-
istic, and the communication bandwidth, i.e., a characteristic
of the Cloud infrastructure, as random variables. We assume
these random variables to be independent. In what follows,
uppercase letters refer to random variables.

D. Execution time and cost evaluation

Once defined the MapReduce and Cloud models and given
a scheduling plan, it is possible to derive the random variables
associated with the job execution time and the corresponding
monetary cost. As already discussed, these evaluations depend
on the mapping between the tasks and the VMs which in turn
determine the execution times of the individual tasks.

1) Task execution time: To evaluate the execution time of
a task, we need to consider whether it is a map or a reduce
task. In particular, the execution time of a map task includes
the processing time – determined by the task length and the
speed of the allocated VM – as well as the data transfers from
the datasource and to the reduce tasks. On the contrary, the
execution time of a reduce task only includes its processing. In
details, the execution time Ti of task i is obtained as follows:

Ti =



δi
BDS−VMi︸ ︷︷ ︸

data input

+
Li

sVMi︸ ︷︷ ︸
processing

+

m+r∑
j=m+1

γi,j
BVMi−VMj︸ ︷︷ ︸

data shuffle

i ≤ m

Li

sVMi︸ ︷︷ ︸
processing

i > m

where VMi denotes the VM instance allocated to task i.
We recall that Li, BDS−VMi and BVMi−VMj are random

variables. Therefore, Ti’s are themselves random variables.
2) Job execution time: Predicting the job execution time
T is fundamental for evaluating the probability of deadline
violation, which is a constraint of our optimization problem.
However, the offline evaluation of the job execution time is not
straightforward because it relies on the combination of several
probability distributions as discussed in Section III-C. In
particular, it is necessary to perform some algebraic operations
on the random variables describing the task execution times,
e.g., sum of the times spent in the map and reduce phases. In
detail, these values are obtained by computing the maximum
times spent in each phase across the allocated VM instances.
In addition, whenever multiple tasks are executed sequentially
on a single VM, it is necessary to take the sum of the execution
times of the individual task.

3) Job execution cost: The objective of the optimization
problem (1) is to minimize the expected job execution cost.
The cost for deploying a MapReduce job on a Cloud infras-
tructure is determined by the execution times of the individual
tasks as well as by the data transfer and the Cloud pricing
models, namely:

Cost =

m+r∑
i=1

Ti · cexeVMi︸ ︷︷ ︸
VM leasing

+ cDS ·
m∑
i=1

δi︸ ︷︷ ︸
data transfer DS-VM

+

m∑
i=1

m+r∑
j=m+1

cnetVMi · γi,j︸ ︷︷ ︸
data transfer VM-VM

E. Provisioning and scheduling algorithms

To solve the optimization problem, we consider two mini-
mization algorithms: a pruned-tree version of the Branch-and-
Bound (BB) algorithm [4] and an extension of the Deadline-
aware Tasks Packing (DTP) heuristic [3]. The BB algorithm
is an exact method, therefore, it is only feasible for “small”
problems in terms of number of tasks and VM types.

On the contrary, the DTP heuristic takes advantage of the
precedence constraints of MapReduce jobs when devising the
scheduling plans. In details, this heuristic splits the job dead-
line into map phase and reduce phase deadlines whose lengths
are proportional to the lengths (i.e., number of instructions) of
the longest map and the longest reduce tasks. The algorithm
considers the VMs starting from the cheapest to the most
expensive and schedules on a given VM the maximum number
of sequential tasks that satisfies the probabilistic constraint
on the corresponding phase deadline. This process is iterated
across all VMs until all tasks have been scheduled. The first
scheduling plan that satisfies the overall job deadline is then
selected as the solution. Note that while the DTP algorithm
can be successfully applied to large MapReduce jobs, it does
not guarantee to identify the optimal solution, i.e. the cheapest
scheduling plan.

V. EXPERIMENTAL RESULTS

To evaluate the probabilistic approach proposed in this
paper, we focus on the case study described in Section IV.
In particular, after identifying an optimal scheduling plan for
the given workload and Cloud infrastructure, we run several
simulation experiments aimed at assessing the behavior of the
identified plan in terms of two metrics, namely, the number of
deadline violations and the average job execution cost.

A. Experimental setup

The case study relies on the MapReduce and Cloud models
presented in Section IV. In a first set of experiments, we
consider jobs consisting of five map tasks and two reduce
tasks. The characteristics of these tasks are as follows. Each
map task receives 1 GB of data from an external datasource
and transfers 50 MB and 100 MB intermediate results to the
two reduce tasks. In addition, the length of a map task is
270,000 millions of instructions (MI), whereas the lengths
of the reduce tasks are equal to 40,000 MI and 27,000 MI,
respectively. Each job is also characterized by a deadline. In
our experiments, we consider two different deadlines, equal to

4



TABLE II
MAIN CHARACTERISTICS OF THE CLOUD INFRASTRUCTURE CONSIDERED

IN THE EXPERIMENTS.

VM Type Cost [$/h] Speed [MIPS]

Cloud A
1 0.84 800
2 0.10 500
3 0.07 400

Cloud B 1 1.70 1,200
2 2.50 1,500

TABLE III
MAIN CHARACTERISTICS OF THE NETWORKS CONNECTING THE

DATASOURCE TO THE VMS AND BETWEEN VMS.

Bandwidth Cost
VM-VM 200Mbit/s 0.010c/GB
DS-VM 100Mbit/s 0.005c/GB

800 and 1,400 seconds, respectively. Note that the deadlines
are chosen to lie between slowest and fastest scheduling plan.
The probability of deadline violation is set to p=0.05.

Table II summarizes the main characteristics of the VMs
considered in the experiments. Although the pricing model is
expressed on a per hour basis, we assume a per minute billing
policy.

The main characteristics of the networks connecting the
datasource to the VMs and of the network between VMs are
presented in Table III.

To take into account the variability and uncertainties in
the task length as well as in the communication bandwidth
between datasource and VMs and between VMs, we describe
each of these attributes in terms of their Lognormal distri-
bution. We recall that the corresponding probability density
function is given by:

f(x) =
1√
2πµx

e−
(ln(x/µ))2

2σ2 µ, σ > 0

where µ and σ denote the scale and shape parameters, respec-
tively.

B. Simulation environment

Our experiments rely on the CloudSim toolkit, a framework
for modeling and simulation of Cloud computing infrastructure
and services [12]. Since in our approach the characteristics of
the workload and of the Cloud infrastructure are described in
terms of random variables, we extend the toolkit to accom-
modate these requirements. In detail, we integrate the SSJ
library [13] to generate random variables according to the
given probability distribution. In addition, to efficiently solve
the optimization problem, we integrated CloudSim with the
R Project for Statistical Computing1. In particular, we exploit
the distr package [14] for the computation of the algebraic
operations required to evaluate the probabilistic constraints
associated with the workload. Moreover, for each simulation
experiment, we perform 200 independent replications.

1https://www.R-project.org/

C. Impact of the variability

The first set of experiments focuses on the impact of
the variability of the task lengths and network bandwidths
on provisioning and scheduling. As already pointed out, we
describe these attributes by means of Lognormal distributions.
Moreover, we vary the coefficient of variation (CV) of each
distribution from 0 up to 0.5. More precisely, we apply the
Branch-and-Bound algorithm to identify the optimal schedul-
ing plan corresponding to each value of the CV and then we
simulate the various plans. In what follows, we present the
results of these simulation experiments.

Figure 2 shows the percentage of deadline violations and
average job execution cost as a function of the CV of the
distributions. As expected, the fraction of violations is mostly
under the given 5% threshold (represented by the dashed line,
in Figure 2 (a)). We can also observe (see Figure 2 (b)) that
the costs of the scheduling plans tend to increase with the
variability especially in the case of the tighter deadline. This
is because the identified scheduling plans require faster and
more expensive resources to satisfy the deadline constraint
when the variability increases.
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Fig. 2. Percentage of deadline violations (a) and cost (b) of the probabilistic
scheduling plans as a function of the coefficients of variation of the Lognormal
distributions.
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Fig. 3. Percentage of deadline violations (a) and cost (b) of the deterministic
scheduling plans as a function of the coefficients of variation of the Lognormal
distributions.
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To underscore the role played by the job and Cloud
variability in the identification of the scheduling plans, we
identify plans – by means of the BB algorithm – that only
take into account the expected values of task lengths and
network bandwidths. We then compare these optimal plans
with the optimal plans identified by the probabilistic approach.
Let us recall that in the simulation of these deterministic
scheduling plans we take into account the actual job and
Cloud variability. As shown in Figure 3 (a), the percentage
of deadline violations increases with the variability up to 85%
for the tighter deadline, i.e., 800 seconds. On the other hand,
the corresponding cost is not significantly affected by the
variability (Figure 3 (b)).

As a general result, we can observe that shorter deadlines
result in more expensive probabilistic scheduling plans or
in deterministic plans with increased number of deadline
violations.

To further assess the role of uncertainties and variability, we
analyze additional deterministic scheduling plans identified by
considering some sort of “over-estimations” of the workload
and Cloud attributes. In particular, we identify a first set of
scheduling plans (hereafter denoted as “Over-Est1”) where the
decisions are based on the expected values of these attributes
inflated by 20%. In a second set of scheduling plans (here-
after denoted as “Over-Est2”), we assume to some additional
knowledge on the variability; more precisely, both the expected
values and the standard deviations of the workload and Cloud
attributes are known. Therefore, the identification relies on the
expected values plus the values of their corresponding standard
deviations. As Figure 4 shows, the additional knowledge of the
variability does not provide any substantial benefit in terms of
number of deadline violations and cost. The observed behavior
is quite unpredictable and the deadline is often violated. Note
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Fig. 4. Percentage of deadline violations (a) and cost (b) as for the two
over-estimations.

that these “over-estimations” do not result in overprovisioning
of Cloud resources since they are only considered for the
selection the number and types of VMs to be allocated.

To further analyze the impact of the variability on provision-
ing and scheduling, we apply the DTP heuristic to identify
the scheduling plans and we compare these plans with the
optimal plans identified by the Branch-and-Bound algorithm.

(Figure 5). As can be seen, both algorithms satisfy the deadline
constraint, although the DTP provides slightly more expensive
scheduling plans because it does not fully explore the entire
solution space. However, as already pointed out, the applica-
bility of Branch-and-Bound algorithm is limited because of
the combinatorial nature of solution space.
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Fig. 5. Deadline violations (a) and cost (b) of the scheduling plans identified
by DTP heuristic and by the Branch-and-Bound algorithm as a function of
the coefficients of variation of the Lognormal distributions.

D. Impact of job size

The second set of experiments focuses on analyzing the
behavior of our probabilistic approach with respect to the job
size. Hence, we focus on jobs consisting of m = 5 · 2n−1
map and r = 2n reduce tasks, with n ranging from one
up to six. We consider a deadline of 5,000 seconds to allow
for sequential execution of multiple tasks on the individidual
VMs. Moreover, we set the coefficients of variation of the
Lognormal distributions to 0.25. Figure 6 shows a comparison,
as a function of the job size, of various DTP based approaches.
In detail, the figure plots the percentage of deadline violations
and the cost of the scheduling plans identified by the proba-
bilistic approach and by three “over-estimations” based on:

1) Expected values of the workload and Cloud attributes
(Over-Est0).

2) Expected values of the workload and Cloud attributes
inflated by.50% (Over-Est1);

3) Expected values of the workload and Cloud attributes
plus half of their standard deviations (Over-Est2).

As expected, the probabilistic approach satisfies the deadline
even in the case of jobs with a large number of tasks.
Conversely, as shown in Figure 6 (a), for the scheduling plans
corresponding to the three over-estimation approaches the
number of violations increases with the job size and exceeds
the constraint. The Over-Est0 and Over-Est2 scheduling plans
begin violating the 5% constraint when the number of map
tasks is equal to 20 and 40, respectively. On the other hand,
Over-Est1 performs better and exceeds the 5% limit only for
jobs consisting of 160 map tasks.

Interestingly, all approaches provide scheduling plans with
very similar costs, as depicted in Figure 6 (b). This is due to
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Fig. 6. Comparison of probabilistic approach with various over-estimations
as a function of the job size.

the fact that the DTP heuristic always starts selecting instances
of the cheapest VM type regardless the estimation approach.
The various scheduling plans differ only in the number of
provisioned VMs, hence in their degree of parallelism, which
depends on the approach used by the heuristic. Therefore,
since tasks are allocated to VMs with the same characteristics,
the execution time of all the tasks – and the corresponding
cost – does not significantly vary.

In summary, the application of the DTP heuristic to the
probabilistic approach identifies scheduling plans, which cope
with the constraint on the deadline violation probability and
are as expensive as the solutions based on over-estimations.

VI. CONCLUSIONS

Resource provisioning and task scheduling in Cloud en-
vironments face multiple challenges. On the one hand, they
need to cope with the fluctuating workload patterns and
the unpredictable behaviors and unstable performance of the
infrastructure. On the other hand, they have to meet user
expectations and identify the most cost-effective infrastructure
for successfully deploying the applications. In this paper,
we addressed the resource provisioning and task scheduling
from a probabilistic perspective that takes into account the
variability and uncertainties typical of Cloud environments.
We formulated an optimization problem whose objective is to
identify scheduling plans that minimize the overall monetary
cost for leasing Cloud resources subject to some workload
constraints. This cost-aware model ensures to meet with a
given probability the deadline associated with the application.
In addition, the model provides users with offline predictions
of the resources to be provisioned, thus reducing the risk
and the impact of overprovisioning or underprovisioning. A
case study based on a MapReduce workload was implemented
to evaluate the proposed approach. The simulation results
show the importance of taking into account the workload and
Cloud variability in the provisioning and scheduling strategies.
Moreover, our model is robust in that the identified scheduling
plans are able to adapt, with the specified probability, to the
variability and at the same time to cope with the deadline
constraint.

As a future work, we plan to extend the probabilistic
provisioning and scheduling to different types of workloads,
such as, bag of tasks and interactive applications. In addition,
we plan to investigate novel heuristics targeted to the workload
characteristics.
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the Cloud: Observing, Analyzing, and Reducing Variance,” Proc. VLDB
Endow., vol. 3, no. 1-2, pp. 460–471, 2010.

[10] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of Resource
Provisioning Cost in Cloud Computing,” IEEE Transactions on Services
Computing, vol. 5, no. 2, pp. 164–177, 2012.

[11] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[12] R. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya,
“CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing
Environments and Evaluation of Resource Provisioning Algorithms,”
Software Practice & Experience, vol. 41, no. 1, pp. 23–50, 2011.

[13] P. L’Ecuyer, L. Meliani, and J. Vaucher, “SSJ: A Framework for
Stochastic Simulation in Java,” in Proceedings of the 2002 Winter
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