A Methodology Towards Automatic Performance Analysis of
Parallel Applications

Maria Calzarossa, Luisa Massari, Daniele Tessera
Dipartimento di Informatica e Sistemistica
Universita di Pavia
1-27100 Pavia, Italy
{mcc,massari,tessera}@alice.unipv.it

ABSTRACT

Tuning and debugging the performance of parallel applications is an iterative
process consisting of several steps dealing with identification and localization of
inefficiencies, repair, and verification of the achieved performance. In this paper,
we address the analysis of the performance of parallel applications from a method-
ological viewpoint with the aim of identifying and localizing inefficiencies. Our
methodology is based on performance metrics and criteria that highlight the prop-
erties of the applications and the load imbalance and dissimilarities in the behavior
of the processors. A few case studies illustrate the application of the methodology.

Keywords: parallel application; performance analysis; performance metrics; load imbalance.

1 Introduction

The performance achieved by a parallel application is the result of complex interactions between
the hardware and software resources of the system where the application is being executed. The
characteristics of the application, e.g., algorithmic structure, input parameters, problem size,
influence these interactions by determining how the application exploits the available resources
and the allocated processors. In this framework, tuning and debugging the performance of
parallel applications become challenging issues [16].

A typical approach to address these issues is experimental, that is, based on instrumenting
the application, monitoring its execution and analyzing its performance either on the fly or

post mortem. Many tools have been developed for this purpose (see e.g., [1], [2], [7], [17],

[18]). These tools analyze the measurements collected at run-time and provide statistics and
diagrams describing the performance of the application and of its activities, e.g., computation,
communication, I/O. The major drawback of these tools is that they fail to assist users in
mastering the complexity inherent in this analysis.

To overcome this drawback, various methodological approaches have been proposed and
tools have been developed out of these approaches with the aim of identifying performance
bottlenecks, that is, the code regions, e.g., routines, loops, of the applications critical from
the performance viewpoint. The Poirot project [8] proposed a tool architecture to automatic
diagnose parallel applications using a heuristic classification scheme. The Paradyn Parallel
Performance tool [12] dynamically instruments the applications to automate bottleneck de-
tection at run-time. The Paradyn Performance Consultant starts a hierarchical search of the
bottlenecks and refines this search by using stack sampling [14] and by pruning the search
space considering the behavior of the application during previous runs [9]. The Kappa-Pi tool
[3] deals with a post mortem automatic performance analysis of message passing applications
based on PVM. The analysis of processor utilizations leads to the identification of performance
bottlenecks classified by means of a rule based knowledge system. Aksum [4] automatically per-
forms multiple runs of a parallel application and detects performance bottlenecks by comparing
the performance achieved varying the problem size and the number of allocated processors.

In this paper, we address the analysis of the performance of parallel applications from a
methodological viewpoint with the aim of identifying and localizing performance inefficiencies.
We define new performance metrics and criteria that highlight the properties of the applications
and the load imbalance and dissimilarities in the behavior of the allocated processors. These

metrics rely on the measurements collected by monitoring at run-time the applications. The

integration of this methodology into a performance tool will help users in interpreting the
performance achieved by their applications.

The paper is organized as follows. Section 2 presents the methodology and introduces metrics
and criteria for the evaluation of the overall behavior of a parallel application. Section 3 focuses
on the behavior of the processors allocated to the application. Section 4 presents an application
of the methodology on a few case studies. Finally, Section 5 summarizes the methodology and

discusses its integration into a performance analysis tool.

2 Characterization of Performance Properties

Tuning and debugging the performance of a parallel application can be seen as an iterative pro-
cess consisting of several steps, dealing with the identification and localization of inefficiencies,
their repair and the verification and validation of the achieved performance. Our objective is
to define performance metrics and criteria for explaining the properties and the behavior of an
application by identifying and localizing its performance inefficiencies.

As already stated, these metrics rely on the performance measurements collected at run-
time. Various types of parameters can be measured. They include timings parameters, such as,
wall clock times, as well as counting parameters, such as, number of I/O operations, number
of bytes read/written, number of memory accesses, number of cache misses, number of bytes
sent/received. These parameters can be measured at different levels of granularity, that is, they
can refer to the whole application, to its activities, e.g., computation, communication, memory
accesses, 1/0, or to its code regions, e.g., loops, routines, code statements.

Our methodology follows a top down approach which first focuses on the overall behavior of
the application in terms of its activities. Then, the individual code regions of the application

and the activities performed within each of them are considered.

Note that the granularity of the measurements determines the level of details of the metrics
that can be obtained by applying our methodology. However, as the parameters to be measured
are typically defined when the applications are instrumented and monitored, it is out of the
scope of this work to address these issues.

In what follows, we assume that the measurements refer to an execution of a parallel appli-
cation with P processors, where K different activities and N code regions have been monitored.
Moreover, not to clutter the presentation, we will focus on timings parameters. The extension
of the methodology to counting parameters is straightforward and will be discussed on one of

the case studies (see Sect. 4.1). Table 1 summarizes the notations and definitions used in this

paper.

Parameter Description

number of allocated processors

number of activities

number of code regions

wall clock time of the application

wall clock time of activity 57 (j = 1,2,...,K)

i wall clock time of code region 7 (i = 1,2,...,N)

ij wall clock time of activity j in code region ¢
(t=1,2,...,N;7=1,2,...,K)

tijp wall clock time of processor p for activity j in code region i

(t1=12,...,N;7=12,...,K;p=1,2,...,P)

SH2x7

S~

Table 1: Notations and definitions.

A coarse grain characterization of a parallel application is based on the breakdown of its
wall clock time T" into the times T} spent in the various activities. We define the activity with
the maximum 7} as the dominant, that is, “heaviest”, activity of the application.

Our next step is to describe each code region ¢ by its wall clock time ¢;. We then identify

the dominant, i.e., “heaviest”, code region of the application as being characterized by the

maximum ¢;. The analysis has then to be focused on the dominant code region and activity as
they could be critical for the performance of the application. Hence, we consider the breakdown
of each #; into the times ¢;; spent into the various activities. It might be difficult to understand
which activity better explains the behavior and the performance of the application. We can
identify the code region with the maximum time in the dominant activity of the application.
Moreover, for each activity j we can identify the worst and the best code regions, that is, the
code regions with the maximum and minimum ¢;;, respectively. Clustering techniques help in
summarizing and interpreting this information by identifying patterns or groups of code regions
characterized by a similar behavior. Each code region 4, described by its wall clock times ;;, is
then represented as a point in a K-dimensional space. Clustering partitions these points into
groups of code regions with similar characteristics, among which the candidates for possible

performance tuning can be identified.

3 Characterization of Processor Dissimilarities

The coarse grain characterization of the performance properties of parallel applications is fol-
lowed by a fine grain characterization that focuses on the behavior of the processors with the
objective of identifying the most imbalanced activity and code region.
Load balancing is an ideal condition for an application to achieve good performance by fully
exploiting the benefits of parallel computing. Programming inefficiencies might lead to uneven
work distribution among processors that, in turn, leads to poor performance because of loss of
synchronization, dependencies, and resource contentions among the processors.

Our methodology focuses on identifying and localizing whether and where an application
experienced poor performance because of load imbalance. For this purpose, we consider the

dissimilarities in the behavior of the processors by analyzing the spread of the ¢;;,’s, that is,

the wall clock times spent by the various processors to perform activity j within code region 3.

In particular, our methodology is based on:

e the definition of metrics to detect and quantify dissimilarities;

e the definition of criteria to assess their severity.

We derive the metrics for evaluating the dissimilarities according to the majorization the-
ory [11], [15], that provides a framework for measuring the spread of data sets. Such a theory
is based on the definition of indices for partially ordering data sets according to the dissimi-
larities among their elements as to identify the data sets that are more spread out than the
others. Dissimilarities can be measured by different indices of dispersion, such as, variance,
coefficient of variation, Euclidean distance, mean absolute deviation, maximum, sum of the
elements of the data sets. The choice of the most appropriate index of dispersion depends on
the objective of the study and on the type of physical phenomenon to be analyzed. In studying
processor dissimilarities, the index of dispersion has to measure the spread of the times spent
by the processors to perform a given activity with respect to the perfectly balanced condition,
where all processors spend exactly the same amount of time. The Euclidean distance between
the wall clock time of each processor and the corresponding average is then well suited for our
purpose.

Having defined the metrics for evaluating dissimilarities, we have to select criteria for their
ranking such as to identify and localize the activity and code region characterized by the largest
load imbalance. Possible criteria to assess the severity of the dissimilarities among processors
are the maximum of the indices of dispersion, some percentiles of their distribution, or some
predefined thresholds. The choice of the criteria depends on the level of details required by the

analysis.

The study of the dissimilarities can be summarized by the following steps:
e standardization of the wall clock times;

e computation of the indices of dispersion;

e ranking of the indices of dispersion.

As the indices of dispersion have to provide a relative measure of the spread of the wall clock
times, we first standardize the ¢;;,’s with respect to the wall clock times spent by all processors

to perform activity j in code region 7. The standardized times fijp are given by:

7o lip
P T P b
p=1"1)p

To quantify the dissimilarities of the times spent by the various processors to perform activity
J within code region 4, we define the index of dispersion I.D;;, that is, the distance between the

tijp’s and their average:

p=1

P
IDjj = \j > (tigp — tij)?
We then focus on the dissimilarities of the various activities and code regions.
Let ID_A; be the index of dispersion for activity j, that is, the measure of the load imbalance

within the activity. This index is defined as the weighted average of the ID;;’s with respect to

the fraction of the wall clock time of activity 5 spent within code region i:

ID_A; = ZTL; ID;; .
=1

To provide a measure of the dissimilarities that takes into account the wall clock times of

the activities, we define the scaled index of dispersion SID_A; given by:

T

K
> =1 T

SID_Aj = ID_A;.

7

A similar approach is adopted for characterizing the dissimilarities of the code regions. Let
ID_C; be the index of dispersion of code region 4, that is, the measure of the load imbalance
within the code region. This index is defined as the weighted average of the I.D;;’s with respect

to the fraction of the wall clock time of code region ¢ due to activity j:

L
IDC; = Y L IDj;.

j=1"

The scaled index of dispersion SID_Cj, that takes into account the wall clock times of the

code regions, is then given by:

SID.C; = —2— ID Gy,

i=1ti

Once we have computed the indices of dispersion for the various activities and code regions,
we rank them to assess the severity of the dissimilarities. The activity and the code region with
the maximum of the SID_A; and SID_C; are the most suitable candidates for performance

tuning.

4 Case studies

In this section, we discuss our methodology on three case studies dealing with the identification
of the inefficiencies of two kernels from the NAS Parallel Benchmarks 2.3 suite [13] and of a
computational fluid dynamic application [10].

These case studies illustrate the application of our methodology on programs with different
characteristics and on measurements collected at different levels of granularity. Note that to
derive preliminary insights into the behavior of the processors the case studies dealing with the
two kernels rely on some visualization, whereas the analysis of the computational fluid dynamic

application does not rely on any visualization because of its complex algorithmic structure.

4.1 Integer Sorting kernel

The first case study focuses on the NAS Integer Sorting (IS) kernel [13], a kernel that performs
a distributed integer sorting of 8,388,608 elements (i.e., class A benchmark). The case study
considers an execution of the kernel on 64 processors of an IBM NetFinity Linux cluster.
The characterization relies on measurements collected by the MPICH profiling library [6], and
referring to the eight code regions corresponding to the MPI communication statements used
in the kernel.

These statements refer to the collective communications (i.e., MPI_Allreduce, MPI_Alltoall,
MPI_Alltoallv) used to distribute the elements to be sorted among the processors, and to the
point-to-point communications (i.e., MPI_IRecv, MPI Recv, MPI_Send, MPI_Wait), used to ex-
change elements, i.e., the local maxima, between neighboring processors. Moreover, the kernel
uses the MPT Reduce statement for timing purposes.

For each code region, measurements contain both timings and counting parameters. In
particular, the parameters refer to the wall clock time and the occurrences of each code region,
and to the number of bytes sent/received.

From the analysis of the wall clock times, we notice that the MPT_A11toallv is the dominant
code region, as it accounts for 0.175 seconds, that is, about 51% of the total wall clock time of
the code regions.

To characterize the dissimilarities in the behavior of the 64 processors allocated to the kernel,
we have first analyzed the wall clock times spent by the processors in the various code regions.
Figure 1 plots the times spent by each processor in the MPI_Al11ltoall and MPI_Allreduce code
regions. We notice that in the case of the MPI_A11toall statement (Fig. 1(a)), the times of

about one third of the processors are much longer, whereas we do not notice such a behavior

in the case of the MPI_Allreduce statement (Fig. 1(b)). Moreover, the range of the times of
the MPT_Alltoall statement is much smaller.

To derive a quantitative characterization of the dissimilarities experienced by each commu-
nication statement, we compute the corresponding indices of dispersion. Table 2 shows the
indices of dispersion for the various communication statements. Note that the table reports

only the communication statements whose indices of dispersion and wall clock times are non

negligible.
MPI_Alltoall MPI_Allreduce
0.05 0.25
0.04 0.2
— 0.03 — 0.15
@ @
(0] (0]
£ £
= 0.02 o = 01
7 | ~l
|
0 10 20 30 40 50 60 0 10 20 30 40 50 60
processors processors
(a) (b)

Figure 1: Times spent in the MPI_A11toall (a) and the MPI_Allreduce (b) code regions.

We notice that the index of dispersion of the MPT_A11toall statement is about three times
larger than the index of dispersion of the MPI_Allreduce. Moreover, the MPI_Allreduce state-

ment is characterized by the maximum scaled index of dispersion, that is equal to 0.0142307.

Code region IDC SID C

MPI_Allreduce | 0.0338871 | 0.0142307
MPI_Alltoall | 0.0894876 | 0.0052846
MPI Alltoallv | 0.0212838 | 0.0102718
MPI Reduce 0.2758272 | 0.0025301

Table 2: Indices of dispersion of the code regions of the IS kernel.

10

The characterization of the kernel with the counting parameters shows that MPI_Allreduce,
MPI _Alltoall, and MPI Reduce statements are perfectly balanced, that is, each processor
exchanges exactly the same amount of data with the same number of occurrences. The
MPI_Alltoallv statement is the most imbalanced with respect to the volume of exchanged
data. Hence, we can conclude that the MPI_Alltoallv statement, that is also the dominant
code region, and the MPI_Allreduce, that is characterized by the maximum scaled index of

dispersion, are good candidates for performance tuning.

4.2 Multigrid kernel

The second case study focuses on the NAS multigrid (MG) kernel [13], a kernel that solves the
scalar discrete Poisson equation on a 256x256x256 grid (i.e., class A benchmark). This case
study considers an execution of the kernel on 256 processors of an IBM NetFinity Linux cluster.

The measurements refer to the wall clock times of seven code regions of the kernel. These
code regions correspond to the interp, psinv, resid, rprj3, bubble, norm2u3, and zero3
routines that implement the computational core of the multigrid algorithm.

Table 3 reports the wall clock time, in seconds, of each code region. As can be seen from
the table, the resid routine, that evaluates the residual error of approximate solutions, is the
dominant code region and accounts for about the 33% of the total wall clock time of the code

regions (that is, 1.90926 seconds).

bubble interp | norm2u3 psinv resid rprj3 zero3
0.000067 | 0.210597 | 0.208532 | 0.546485 | 0.630935 | 0.296276 | 0.016373

Table 3: Wall clock time, in seconds, of each code region.

To derive preliminary insights into the behavior of the processors we have applied some

11

visualization. Figure 2 shows a distribution of the processors as a function of their wall clock
times. For each code region, the figure shows the fraction of processors whose wall clock time
is in the lower 15% (light gray) or in the upper 15% (dark gray) interval of the range of the
wall clock time. The fraction of processors whose wall clock time is outside these intervals is

represented in white.

bubble
interp
norm2u3
psiny
resid
rpri3
zero3

Legend

OLower 15%
B Upper 15%

0% 25% 50% 75% 100%

Figure 2: Distribution of the processors according to their wall clock times.

The figure shows that the behavior of the processors across the code regions is quite different.
For example, in the case of the rprj3 routine, about 24% of the processors is characterized by a
wall clock time within the lower 15% interval and 2% only of the processors is characterized by
a wall clock time within the upper 15% interval. In the case of the interp and zero3 routines,
more than 34% of the processors is characterized by a wall clock time within the upper 15%
interval.

From the figure it is difficult to draw any conclusion about the processor dissimilarities. We
can also look at the densities of the wall clock times of the processors. Figure 3 shows the
densities for two code regions, namely, the interp routine (Fig. 3(a)) and the rprj3 routine
(Fig. 3(b)). As can be seen, the behavior of the processors is very different for the two routines
although both perform a trilinear finite element projection.

To quantify the dissimilarities experienced by the processors in the various code regions we
compute the indices of dispersion (see Table 4). From the table we notice that the spread of

the times of the interp routine is about twice the spread of times of the rprj3 routine. The

12

interp rpri3

80 1 80
60 60
> >
o o
c c
5] 5]
& &
8 40 8 40
20 1 20
30.621 82.506 134.390 186.275 238.159 290.044 218.947 265.066 311.185 357.304 403.423 449.542
wall clock time (ms) wall clock time (ms)
(a) (b)

Figure 3: Density of the wall clock times of the processors.

Code region IDC SID_C

bubble 0.0132119 0.0000005
interp 0.0200752 0.0022144
norm2u3 0.0040778 0.0004454
psinv 0.0056927 | 0.0016294
resid 0.0047494 | 0.0015695
rprj3 0.0111050 | 0.0017233
zero3 0.0062990 | 0.0000540

Table 4: Indices of dispersion of the seven code regions of the MG kernel.

indices of dispersion of these routines are equal to 0.0200752 and 0.0111050, respectively.
Table 4 also reports the scaled indices of dispersion used to assess the severity of the dissim-
ilarities in the processor behavior of each code region. The interp routine, that interpolates
the correction from the coarser grid to the actual approximation, is the code region with the
maximum scaled index of dispersion, that is, with the most severe imbalance. As reported
in the table, both its index of dispersion and its scaled counterpart are the maxima. Hence,
the interp routine, although its wall clock time is shorter than the wall clock times of other

routines, is a good candidate for performance tuning.

13

4.3 Fluid dynamic application

The third case study focuses on a message passing computational fluid dynamic application [10]
that uses various numerical algorithms to solve the Navier-Stokes equations. The measurements
refer to an execution of the application on 16 processors of an IBM Sp2 and are associated
with nine code regions corresponding to the main routines and loops of the application. In
particular, measurements refer to the wall clock times of these code regions and of the four
activities performed within each of them, namely, computation, point-to-point communications,
collective communications, and synchronizations. In what follows, for the sake of simplicity,
the code regions are identified with a number, ranging from 1 to 9.

Table 5 presents the breakdown of the wall clock time of the application into the times spent
into its four activities. As can be seen, the dominant activity, i.e., computation, accounts for

approximately 59% of the wall clock time of the application, that is, 69.924 seconds.

computation | point-to-point | collective | synchronization
41.56 13.69 14.60 0.074

Table 5: Wall clock times, in seconds, of the activities performed by the application.

Table 6 presents the wall clock time of each code region with the breakdown into the times
of its activities. We notice that the dominant code region, that is, code region 1, accounts for
about 27% of the wall clock time of the application. This code region, that is the core of the
application, is characterized by the longest time in the dominant activity of the application,
i.e., computation, as well as in collective communications and synchronizations, whereas it does
not perform any point-to-point communication. The code region which spends the longest time

in point-to-point communications is code region 3. Moreover, only three code regions perform

14

Code region | wall clock time wall clock time breakdown
computation | point-to-point | collective | synchronization
1 19.051 12.24 - 6.75 0.061
2 14.22 7.90 - 6.32 -
3 10.90 5.22 5.68 - -
4 10.54 8.03 2.51 - -
5 9.041 7.53 0.07 1.43 0.011
6 3.38 - 3.38 - -
7 1.79 - 1.72 0.07 -
8 0.692 0.36 0.33 - 0.002
9 0.31 0.28 - 0.03 -

Table 6: Wall clock times, in seconds, of the code regions and of their activities.

synchronizations.

The application of clustering techniques to the code regions, described by the wall clock times
of their activities, yields a partition of two groups. The heaviest code regions, that is, code
regions 1 and 2, belong to one group, whereas the remaining code regions belong to the second
group.

To characterize the imbalance of code regions and activities, we compute the indices of dis-
persion ID;; (see Table 7). As can be seen, the behavior of the processors is highly imbalanced
when performing synchronizations. The value of the index of dispersion corresponding to code
region 5 is equal to 0.30571. Code region 1 is the most imbalanced with respect to the times
spent by the processors for performing collective communications, whereas code region 8 is
characterized by the largest indices of dispersion in two activities, namely, computation and
point-to-point communications.

To measure the load imbalance of each code region, we compute the indices of dispersion
ID_C; and SID_C; (see Table 8). We notice that code region 8 is characterized by the maximum

index of dispersion, that is equal to 0.13720. However, as this code region accounts for a very

15

code region | computation | point-to-point | collective | synchronization
1 0.03674 - 0.06793 0.12870
2 0.01095 - 0.00318 -
3 0.00672 0.02833 - -
4 0.01615 0.10742 - -
5 0.00933 0.08872 0.04907 0.30571
6 - 0.00293 - -
7 - 0.07002 0.01036 -
8 0.05017 0.23200 - 0.16163
9 0.00719 - 0.01138 -

Table 7: Indices of dispersion I.D;; of the activities performed by the code regions.

short wall clock (see Table 6), the corresponding scaled index of dispersion is equal to 0.00136
only. Code region 1 is a good candidate for performance tuning as it is the core of the application

and it is also characterized by large values of the index of dispersion and its scaled counterpart.

Table 9 presents the indices of dispersion of the activities. As can be seen, the synchroniza-
tion is characterized by the maximum index of dispersion, whereas its corresponding scaled
index of dispersion is negligible. Hence, this activity is not a suitable candidate for tuning.

The computation seems more suitable, as it is the dominant activity of the application and of

Code region | ID_C | SID.C
1 0.04809 | 0.01310
2 0.00750 | 0.00153
3 0.01798 | 0.00280
4 0.03789 | 0.00571
5 0.01655 | 0.00214
6 0.00293 | 0.00014
7 0.06769 | 0.00173
8 0.13720 | 0.00136
9 0.00760 | 0.00003

16

Table 8: Indices of dispersion of the code regions.

activity ID A | SID_A
computation 0.01904 | 0.01132
point-to-point 0.04701 | 0.00920
collective 0.03766 | 0.00786
synchronization | 0.15559 | 0.00016

Table 9: Indices of dispersion of the activities.

the most imbalanced code region, i.e., code region 1.

5 Conclusions

Performance analysis of parallel applications is quite challenging. Many factors influence the
performance and it is difficult to assess whether and where the applications have experienced
poor performance.

The methodological approach presented in this paper is in the framework of automatic
performance analysis of parallel applications and is aimed at the identification and localization
of their performance inefficiencies. The methodology provides users with some guidelines for
the interpretation of the performance achieved by their applications. We define metrics and
criteria that characterize the performance of the applications. The metrics, derived as a result
of the analysis of measurements collected at run—time, highlight the performance properties
of the applications and the load imbalance and dissimilarities in the behavior of the allocated
processors. The criteria are used to identify the activity and code region experiencing the most
severe performance inefficiencies.

We are currently developing a prototype of a performance tool that computes the metrics
and implements the criteria proposed in this paper. We believe that the integration of our

methodology into a performance tool represents a good enhancement towards automatic per-

17

formance analysis. Users expect from the tools answers to their performance problems and our

methodology tries to provide a few of these answers.

As a future work, we also plan to assess the sensitivity of the metrics and criteria used for

the identification of performance inefficiencies. For this purpose, we will analyze a large set

of measurements collected on different parallel systems for a large variety of numerical and

scientific applications [5].

References

[1]

M. Calzarossa, L. Massari, A. Merlo, M. Pantano, and D. Tessera. Medea: A Tool for
Workload Characterization of Parallel Systems. IEEFE Parallel and Distributed Technology,

3(4):72-80, 1995.

L. DeRose, Y. Zhang, and D.A. Reed. SvPablo: A Multi-Language Performance Anal-
ysis System. In R. Puigjaner, N. Savino, and B. Serra, editors, Computer Performance
Evaluation - Modelling Techniques and Tools, volume 1469 of Lecture Notes in Computer

Science, pages 352-355. Springer, 1998.

A. Espinosa, T. Margalef, and E. Luque. Automatic Performance Evaluation of Parallel
Programs. In Proc. 6-th Euromicro Workshop on Parallel and Distributed Processing,

pages 43-49. IEEE Press, 1998.

T. Fahringer, M. Geissler, G. Madsen, H. Moritsch, and C. Seragiotto. On Using Aksum
for Semi-Automatically Searching of Performance Problems in Parallel and Distributed
Programs. In Proc. 11-th Euromicro Workshop on Parallel and Distributed Processing,

pages 385-392. IEEE Press, 2003.

18

[5]

[10]

[11]

[12]

K. Ferschweiler, S. Harrah, D. Keon, M. Calzarossa, D. Tessera, and C. Pancake. The
Tracefile Testbed - A Community Repository for Identifying and Retrieving HPC Per-
formance Data. In Proc. 2002 International Conference on Parallel Processing, pages

177-184. IEEE Press, 2002.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-performance, portable implementation

of the MPI Message Passing Interface Standard. Parallel Computing, 22(6):789-828, 1996.

M.T. Heath and J.A. Etheridge. Visualizing the Performance of Parallel Programs. IEEE

Software, 8:29-39, 1991.

B. Helm, A. Malony, and S. Fickas. Capturing and Automating Performance Diagnosis:
the Poirot Approach. In Proc. of the 1995 International Parallel Processing Symposium,

pages 606613, 1995.

K.L. Karavanic and B.P. Miller. Improving Online Performance Diagnosis by the Use of

Historical Performance Data. In Proc. SC’99, 1999.

A. Malagoli, A. Dubey, F. Cattaneo, and D. Levine. A Portable and Efficient Parallel
Algorithm for Astrophysical Fluid Dynamics. In Parallel Computational Fluid Dynamics,

pages 553-560. North—Holland, 1995.

A.W. Marshall and I. Olkin. Inequalities: Theory of Majorization and Its Applications.

Academic Press, 1979.

B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K.H. Hollingsworth, R.B. Irvin, K.L. Kara-
vanic, K. Kunchithapadam, and T. Newhall. The Paradyn Parallel Measurement Perfor-

mance Tool. IEEE Computer, 28(11):37-46, 1995.

19

[13]

[14]

[15]

[16]

[18]

NAS Parallel Benchmarks. http://www.nas.nasa.gov/NAS/NPB/.

P.C. Roth and B.P. Miller. Deep Start: A Hybrid Strategy for Automated Performance
Problem Searches. In B. Monien and R. Feldman, editors, Euro-Par 2002. Parallel Pro-

cessing, volume 2400 of Lecture Notes in Computer Science, pages 86—-96. Springer, 2002.

M. Shaked and J.G. Shanthikumar. Stochastic Orders and Their Applications. Academic

Press, 1994.

M.L. Simmons, A.H. Hayes, J.S. Brown, and D.A. Reed, editors. Debugging and Perfor-

mance Tuning for Parallel Computing Systems. IEEE Computer Society, 1996.

J.C. Yan and S.R. Sarukkai. Analyzing Parallel Program Performance Using Normal-
ized Performance Indices and Trace Transformation Techniques. Parallel Computing,

22(9):1215-1237, 1996.

O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward Scalable Performance Visualization
with Jumpshot. The International Journal of High Performance Computing Applications,

13(2):277-288, 1999.

20

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

