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Abstract—Cloud computing provides cost effective solutions
for deploying services and applications. Even though resources
can be provisioned on demand, they need to adapt quickly and
in a seamless way to the workload intensity and characteristics
and satisfy at the same time the desired performance levels and
the corresponding SLAs. Autoscaling policies are devised for
these purposes. In this paper, we apply a state-of-the-art reactive
autoscaling policy to assess the effects of deploying the HTTP/2
server push mechanism in cloud environments. Our simulation
experiments – that rely on extensions of the CloudSim toolkit –
have shown that the autoscaling mechanism is beneficial for web
servers even though pushing a large number of objects might
lead to server overload.
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puting; Autoscaling policies; CloudSim; Workload characteri-
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I. INTRODUCTION

Cloud computing paradigm is being increasingly exploited
in many application domains because of the cost effective
scalable solutions provided on demand. In fact, the use of
sophisticated virtualization approaches and the flexibility and
elasticity of resource provisioning make cloud technologies
particularly suitable to cope with workloads characterized by
highly variable intensity and resource requirements and by spe-
cific performance constraints (see, e.g., [1], [2]). Therefore, to
avoid over-provisioning or under-provisioning, it is necessary
to adapt automatically and in a timely manner the amount of
allocated resources to the workload characteristics.

To cope with these challenging issues, either pro-active or
reactive autoscaling policies are being exploited in cloud envi-
ronments [3]. These policies often take their scaling decisions
according to some specific performance indicators periodically
measured on the cloud infrastructure as well as on predictions
of the resources to be allocated.

In this paper we study cloud autoscaling policies in the
framework of web workloads by focusing in particular on the
deployment of the HTTP/2 protocol [4]. This new standard
protocol promises a significant performance improvement.
Nevertheless, the various workarounds (e.g., domain sharding,
image spriting, inline resources) – implemented by web mas-
ters to cope with HTTP/1.1 inefficiencies – make the transition
quite challenging (see, e.g., [5]). It is therefore important to
specifically assess the benefits of the new features provided
by HTTP/2.

Our paper addresses the so called “server push” opti-
mization mechanism that allows web servers to speculatively
send resources without waiting for explicit client requests.
This mechanism – first introduced by Google in the SPDY
protocol [6] – has good potentials, although its implementation
is not straightforward as it requires web masters to identify the
bundle of resources to be pushed as well as when the server
has to start pushing.

Since no specific best practices nor guidelines have been
released so far, we investigate the efficiency of the push
mechanism as a function of the workload intensity and web
page characteristics. In particular, our study focuses on the
web server side and analyzes the effects of autoscaling when
server push is being deployed. To the best of our knowledge,
this is the first work that analyzes the exploitation of HTTP/2
web servers in cloud environments.

The main contributions of this work are summarized as
follows:

• Performance analysis of the server push mechanism in
cloud environments;

• Design and development of a simulation environment
based on the CloudSim toolkit to exploit a realistic web
workload and a state-of-the-art autoscaling policy.

This paper is organized as follows. Section II addresses
the state of the art in the framework of web workloads,
HTTP/2 and cloud autoscaling policies. Section III presents the
evaluation approach proposed for assessing the performance of
the server push mechanism in cloud environments. Section IV
describes the simulation environment developed to cope with
this complex scenario. The simulation results are presented in
Section V, while Section VI concludes the paper and outlines
some future research directions.

II. RELATED WORK

Web workloads have been extensively studied by focusing
on aspects, such as page and traffic properties, access patterns
and user behavior (see e.g., [7], [8]). Different approaches have
been applied to characterize these conventional workloads and
derive realistic models. The measurements collected by the
web servers in their access logs are typically the basis of these
analyses [9], [10].

The characteristics of web pages are another important
aspect investigated in the literature. In particular, it has been
shown that the increased complexity of the pages – in terms



of number of objects and size – does not significantly affect
page load time [11].

Papers investigating the performance of the new features
introduced by the HTTP/2 protocol have started recently
to appear in the literature. In particular, the performance
impact of the server push mechanism has been investigated
in the framework of both SPDY and HTTP/2 protocols (see,
e.g., [12], [13], [14], [15]). These studies show that page
load time in general improves, although an improper use
of the push feature could lead to performance degradation.
Moreover, while server push is effective on high loss and high
latency networks, it can provide little benefits when high speed
network connections are deployed.

Despite these papers, we consider the challenges related
to the deployment of HTTP/2 server push mechanism in
cloud environments. In fact, this mechanism modifies the
characteristics of the workload being processed by web servers
and the corresponding resource requirements. Therefore, it is
necessary to deploy autoscaling mechanisms to dynamically
manage cloud resources.

In this framework, an important issue deals with mini-
mizing the amount of allocated resources without violating
the QoS constraints. The autoscaling policies proposed in
the literature focus on various aspects, such as performance
monitoring, workload prediction, adaptivity to dynamically
varying workload characteristics and oscillation mitigations
(see, e.g., [16] for a detailed taxonomy and survey). Indeed,
the tradeoff between the cost of autoscaling – expressed for
example in terms of number of autoscaling operations – and its
performance benefits has to be accurately taken into account.

The decisions about the allocation or deallocation of cloud
resources often rely on some monitored or predicted low-level
performance indicators (e.g., utilization of resources, such as
CPU, memory, network bandwidth) or high-level ones (e.g.,
response time, request rate). Metrics that estimate the QoS
perceived by users are also proposed in [17] and [18]. The
overall objective of these studies is to trigger autoscaling
actions as to keep the values of the indicators within some
predefined thresholds.

Autoscaling actions can be reactive, i.e., performed as a
consequence of some workload changes, or pro-active, i.e.,
performed according to some predictions of workload changes.
Combinations of the two approaches have also been proposed
(see, e.g., [19], [20], [21], [22], [23]).

In this paper we do not aim at proposing novel autoscaling
policies. We rather apply a state-of-the-art reactive policy to
assess its benefits for web servers that implement the server
push mechanism.

III. EVALUATION APPROACH

Let us recall that a web page typically consists of a base
HTML file and multiple embedded objects, e.g., style sheets,
JavaScripts, images, each characterized by its own URL. After
parsing the HTML file, browsers issue as many HTTP requests
as the number of objects referenced within the HTML. In turn,
the target web server processes these requests one by one

and generates the corresponding HTTP response messages.
As already pointed out, HTTP/2 tries to overcome some of
the issues typical of this model by allowing the server to
push content before it is actually requested by the browser.
Therefore, for improving page load time, a single HTTP
request can trigger multiple HTTP responses.

For example, to load the home page of the University of
Pavia – shown in Fig. 1 – a browser issues 32 HTTP requests.
These requests refer to the HTML file and the 31 embedded

Fig. 1: Snapshot of the home page of the University of Pavia.

objects the page consists of, namely, one style sheet, five
JavaScripts and 25 images. With the push mechanism, many
of these requests can be saved. In particular, by allowing the
server to push images, it is possible to save 25 requests. The
images will be sent automatically by the server as HTTP
responses. On the contrary, the web server generates responses
for the style sheet and the JavaScripts as soon as it receives
the corresponding HTTP requests.

Therefore, given the characteristics of the pages of a website
– specified in terms of number and types of embedded objects
and their size – and the arrival process of the requests –
specified in terms of the rate of the HTTP requests received by
the server – our evaluation approach considers the problem of
provisioning the appropriate amount of cloud resources (i.e.,
VMs) for the given workload by reacting quickly to any load
change, such as peaks of load (e.g., flash crowd) or sudden
load decrease.

Autoscaling policies work for this purpose. Among the
various policies proposed in the literature, our evaluation
relies on a state-of-the-art approach that reacts according to
the load conditions of the allocated VMs [24]. In particular,
the policy defines two thresholds, that trigger the autoscaling
operations. The upper and lower threshold are associated
with the maximum and minimum desired utilization of the
allocated VMs, respectively. The actual utilization of the VMs
is computed on a given number of consecutive time steps.

The evaluation of the benefits of this autoscaling policy
on the server push mechanism relies on the simulation of a
realistic cloud infrastructure that exploits a web workload.



IV. SIMULATION ENVIRONMENT

For testing the effects of cloud autoscaling policies on
the server push mechanism we designed and developed a
simulation environment that relies on the CloudSim simulation
toolkit [25]. In particular, because of the peculiarities of
the scenario under test, we implemented several extensions
organized into four modules, namely:

• Web Workload Generator;
• Interactive Broker;
• Autoscaling Policy;
• Monitoring.
Figure 2 summarizes the architecture of our simulation

environment and outlines the interactions among the modules
and with the core of the CloudSim toolkit.
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Fig. 2: Architecture of the simulation environment.

As can be seen, CloudSim processes the requests generated
by the Web Workload Generator – according to the specified
workload characteristics – and scheduled by the Interactive
Broker to the VM pool managed by the Autoscaling Policy
module. The Monitoring module periodically samples the
status of the VMs and collects these performance measure-
ments into log files. Note that the modular architecture of our
simulation environment makes it very flexible. This allows for
an easy integration of new autoscaling and scheduling policies
as well as for customization of the monitoring activities and
configuration parameters.

In detail, the Web Workload Generator module is respon-
sible of generating the workload, that is, the requests to be
processed by the web server. Starting from the properties of the
web pages (e.g., number, types and size of the objects) and the
arrival process of the HTTP requests (e.g., interarrival times
between consecutive requests), the module generates the work-
load according to the corresponding probability distributions.
The Workload Generator relies on the Stochastic Simulation in
Java (SSJ) software library1 to manage the probability distri-
butions associated with the workload properties. In addition,
the module supports the generation of multiclass workloads
that include web pages with different characteristics as well
as with different arrival patterns.

1http://simul.iro.umontreal.ca/ssj

Once the requests have been generated, at simulation time
the Interactive Broker module schedules these requests to the
allocated VMs. Various policies, such as last recently used,
weighted round robin, and minimum instantaneous load, have
been implemented. This module is also responsible of the
management of the web content pushing, that is, it pushes
objects according to the specified rules. In particular, these
rules define the object types to be automatically provided.
In addition, the broker is responsible of the allocation and
deallocation of the VMs. In detail, when a new VM is allocated
it will be ready for processing incoming requests after a given
boot time. Moreover, a VM selected for deallocation will be
actually deallocated after the completion of the HTTP requests,
if any, already scheduled on the VM itself.

The Autoscaling policy module implements the reactive au-
toscaling policy that allocates/deallocates the VMs according
to their resource usage evaluated on a given number of time
steps. In particular, this module analyzes the utilization of
the allocated VMs and triggers allocation/deallocation actions
based on their actual load. The properties of the autoscaling
policy (e.g., minimum number of VMs that has to be guaran-
teed) are specified as configuration parameters.

The Monitoring module provides a large variety of detailed
measurements (e.g., number of VMs allocated/deallocated,
VM usage, number of requests being processed, page load
time and time spent to load individual objects) to be used for
evaluating the performance of the simulated scenario.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
by simulating the scenario depicted in Figure 3 under different
HTTP/2 content push configurations.

VM status

Autoscaling
policy

VM Pool

Web page
requests

.

.

.

Fig. 3: Experimental scenario.

These experiments are driven by a workload model de-
rived from measurements collected on the web server of the
University of Pavia during a 24 hours period. Some 330,000
HTTP requests for web pages were received and processed
by the web server. Figure 4 shows their daily arrival pattern
as a function of time. As can be seen, the workload intensity
is characterized by a clear diurnal pattern, with much fewer
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Fig. 4: Daily request arrival pattern.

requests – as little as 42 requests per minute – during the night
and early morning hours, and a peak of about 400 requests per
minute around noon.

The composition of the web pages, that is, number of
embedded objects and their size, is obtained by analyzing
the structural properties of the website. On average the web
pages reference 40 embedded objects each (see Fig. 1). The
processing requirement of each object was set proportional to
its size. In detail, we describe the processing time in terms of
two equally probable uniform distributions, one in the range
[0.2, 2] µs and the other in the range [110, 118] ms.

Another important characteristic of the workload model is
the interarrival time between two consecutive requests to the
embedded objects of a given page. Since these times are
usually quite small, that is, one second or less. We model them
in the simulator using two uniform distributions in the range
[0, 1] s and [1, 2] s, respectively. The probabilities associated
with these distributions are 0.97 and 0.03.

The web workload generated according to these models is
then exploited on a simulated cloud infrastructure consisting
of a pool of homogeneous VMs (see Fig. 3).

As previously discussed, the reactive autoscaling policy
tested in our experiments allocates/deallocates VMs according
to their actual utilization. In particular, we carried out several
experiments to select the most appropriate values of thresholds
that trigger the autoscaling policy as well as the number of
time steps that allow the allocated VMs to closely adapt to the
workload dynamics, while minimizing the number of scaling
operations.

Let us remark that the larger the number of time steps
the more conservative the autoscaling policy is. This means
that the policy is slow in reacting to sudden changes of load
conditions and this can lead to temporary resource under-
provisioning or over-provisioning. On the contrary, decisions
based on few time steps can easily result in oscillations in

the allocated resources. As an example, the step functions
of Figure 5 plot the number of allocated VMs for four and
ten time steps as a function of time. As can be seen, when
decisions are based on fewer time steps (i.e., four), the number
of allocated VMs adapts well to the workload intensity.
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Fig. 5: Behavior of the autoscaling policy with four (red step
function) and ten (blue step function) time steps. The dotted
curve refers to the simulated daily arrival pattern.

In order to simulate realistic scenarios, we include a 30
seconds boot time for newly allocated VMs. In addition, to
avoid oscillations in the number of allocated VMs we include a
cooling time, i.e., the minimum time between two autoscaling
actions. In our experiment, this time is set to 40 seconds.

Table I summarizes the main parameters used in the simu-
lation experiments.

Different push configurations have been simulated by vary-
ing the amount of content to be pushed from 0% (i.e.,
HTTP/1.1 model) up to 100% (i.e., the entire page is pushed
after the request of the HTML file).

The benefits of the server push mechanisms have been
evaluated using performance metrics, such as page load time,
VM utilization, number of allocated VMs.

Table II presents some statistics of the page load time as a
function of the percentage of objects being pushed. As can be
seen, the page load time decreases as the percentage of pushed
objects increases. Note that in case of “partial” push (i.e., push
percentage less than 100%), we assume that for the objects not
being pushed the web server generates separate responses as
soon as it receives the corresponding HTTP requests.

The benefit of push mechanism is also evident when looking
at cumulative distribution function of the page load time. As
Figure 6 shows, in case of full push (i.e., 100%) and no push
(i.e., 0%), page load times exhibit very different behaviors
with much smaller times in the case of full push.



Number of VMs Boot time Cooling time Thresholds Time steps Monitoring resolution
Min Max Start [s] [s] [s]

1 100 20 30 40 0.4 0.8 4 0.1

TABLE I: Simulation parameters.

Page Load Time
Push percentage Avg. Median 99-th percentile

0 21.3 21.1 26.9
50 11.2 11.3 17.9
60 9.3 9.2 15.5
70 7.4 7.2 13.6
80 5.5 5.3 12.0
90 3.9 3.0 11.6
100 2.8 2.4 9.1

TABLE II: Statistics of page load time under different push
configurations. The times are expressed in seconds.
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Fig. 6: Cumulative distribution functions of the page load time
with full push (black curve) and with no push (red curve).

Page load time has been proven to be a good performance
metric for evaluating how the autoscaling policy reacts to load
changes. In detail, we analyze in Figure 7 the number of
allocated VMs and the number of active VMs as a function
of the time of the day. The figure refers to a simulation with
full push. The average number of VMs allocated over the 24
hours is 14, while on average only 9 are actively used. In
addition, we can notice in Figure 8 that when all allocated
VMs are fully utilized, that is, under overload conditions, the
page load time significantly increases. Therefore, autoscaling
policy quickly reacts by increasing the number of allocated
VMs. The page load time then becomes rather stable.

We can also outline that the adopted autoscaling policy leads
to rather balanced utilizations, especially with a larger number
of allocated VMs. The boxplots of Figure 9 summarize the
actual utilization of the VMs as a function of the number of
allocated VMs. The diagram refers to a simulation experiment
with 80% push. Note that our simulation experiments have
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Fig. 7: Number of allocated (light green) and active (dark
green) VMs as a function of the time of the day.
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Fig. 8: Average page load time as a function of the time of
the day.

shown that this behavior is independent of the fraction of
content being pushed.
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Fig. 9: Boxplots of the actual utilization of the VMs as a
function of the number of allocated VMs.



VI. CONCLUSIONS

We presented a study aimed at assessing the benefits of
the HTTP/2 server push mechanism in cloud environments.
A simulation environment based on the CloudSim toolkit has
been designed and developed to exploit a web workload on
a realistic cloud infrastructure and to implement a state-of-
the-art reactive autoscaling policy. The simulation experiments
have shown an overall benefit in adopting the push mechanism.
In particular, the page load time on the server side is signifi-
cantly reduced. Moreover, the amount of content being pushed
does not influence the behavior of the autoscaling policy.

As a future work, we plan to develop benchmarks to
test HTTP/2 push mechanism on a real cloud infrastructure.
Moreover, we will study new autoscaling policies and their
sensitivity to push configuration parameters.
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