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Abstract—Cloud computing allows users to devise cost-effective
solutions for deploying their applications. Nevertheless, the deci-
sions about resource provisioning are very challenging because
workloads are seriously affected by the uncertainty of cloud
performance and their characteristics vary. In this paper we
address these issues by explicitly modeling workload and cloud
uncertainty in the decision process. For this purpose, we adopt a
probabilistic formulation of the optimization problem aimed at
minimizing the expected cost for deploying a parallel application
under a deadline constraint. To find a sub-optimal solution
of the problem we apply a Genetic Algorithm. By tuning its
parameters we are able to assess their role and their impact on
the effectiveness and efficiency of the algorithm for provisioning
and scheduling in uncertain cloud environments.

Index Terms—probabilistic optimization, cloud computing,
resource provisioning, scheduling, Genetic Algorithm, parallel
applications, cloud workload.

I. INTRODUCTION

Cloud computing has gained a significant popularity in
the past few years thanks to key features, such as on de-
mand and pay-per-use models, resource pooling, elasticity
and virtualization. These technologies allow cloud users to
devise cost-effective solutions for deploying their applications.
Nevertheless, decisions about the resources to be provisioned
are very challenging. The allocated resources have to satisfy
the QoS requirements and take account at the same time
of the characteristics and behaviors of the workloads being
processed [1], [2].

In addition, the variability and uncertainty affecting cloud
performance make resource provisioning even more difficult.
For example, virtualization of physical resources may lead to
the co-location of heterogeneous or incompatible workloads,
thus causing interference and contentions usually not directly
related to the infrastructure characteristics [3]. Similarly, Vir-
tual Machine (VM) consolidation may result in the creation
of bottlenecks that cause performance fluctuations and load
imbalance across VMs [4], [5]. Therefore, to avoid inefficient

provisioning, i.e., over- or under-provisioning, resource man-
agement strategies need to cope with these issues.

In this paper we address the problem of resource manage-
ment in the framework of a probabilistic approach that explic-
itly models workload and cloud uncertainty. More specifically,
given a parallel application consisting of multiple tasks char-
acterized by precedence dependencies, our objective is to find
the set of resources to be provisioned and the task scheduling
plan that minimize the monetary cost for leasing resources
under a deadline constraint of the application execution time.
For this purpose, we formulate an optimization problem whose
solution requires the use of heuristic methods because of the
combinatorial search space. To obtain a feasible sub-optimal
solution, we apply a Genetic Algorithm (GA). Moreover, by
tuning the control parameters of the algorithm, we assess its
efficiency and effectiveness as well as the sensitivity of the
solution to these parameters. This allows us to investigate the
trade off between the exploitation and the exploration of the
search space.

The main contributions of this paper are:

« probabilistic approach to resource provisioning and task
scheduling in cloud environments;

o tuning of the control parameters of the Genetic Algo-
rithm; and

« sensitivity analysis of the solution for assessing the role
of the control parameters for provisioning and scheduling
in uncertain cloud environments.

The layout of the paper is as follows: Section II provides
a summary of the related works, while Section III focuses on
the probabilistic approach for resource provisioning and task
scheduling. The implementation of the Genetic Algorithm and
the control parameters to be tuned are described in Section I'V.
The experimental results are presented in Section V. Finally,
some conclusions are drawn in Section VI.



II. RELATED WORK

A large body of the literature focuses on provisioning
and scheduling in cloud environments. To identify the set
of resources that satisfy the performance objectives and the
corresponding constraints, most papers formulate optimization
problems whose solution relies on heuristic or meta-heuristic
approaches (see [6], [7] for detailed surveys).

The formulation of these optimization problems is usually
customized according to the workloads being processed. Ruiz-
Alvarez et al. [8] propose an integer linear programming for-
mulation to devise an optimal scheduling plan for MapReduce
applications and Monte Carlo simulations. A binary integer
program formulation is presented in [9] to study resource pro-
visioning and scheduling of batch applications characterized
by hard deadlines.

In addition, some papers formulate optimization problems
that take explicitly into account the effects exercised by cloud
and workload uncertainty on provisioning and scheduling deci-
sions. The stochastic integer programming problem formulated
in [10] considers the uncertainty associated with resource
demand and pricing in multi-cloud environments. Della Ve-
dova et al. [11] investigate provisioning and scheduling of
MapReduce applications in the framework of a probabilistic
formulation of the optimization problem. Ramirez-Velarde et
al. [12] address dynamic resource allocation in presence of job
runtime uncertainty by developing an execution delay model
for runtime prediction and proposing an adaptive stochastic
allocation strategy. Tang et al. [13] focus on budget-constraint
scheduling of stochastic tasks on heterogeneous cloud systems.
Fard et al. [14] propose a robust approach based on upper and
lower bounds of processing times of a workflow activity under
the assumption of unknown processing time.

To find the solutions of the optimization problems heuristic
and meta-heuristic approaches are often applied to cope with
the size of the search spaces. A comprehensive survey of sim-
ple methods and more sophisticated evolutionary approaches
devised for this purpose is presented in [15]. In particular, to
schedule independent tasks, tasks characterized by precedence
constraints and workflow applications, various combinations of
Genetic Algorithms have been proposed by considering single-
objective and multi-objective functions as well as composite
objectives.

An important issue faced by these algorithms deals with
the choice of the initial population, because of its impact
on processing time, convergence speed and solution quality
of the algorithms. A simple approach based on the Min-Min
and Max-Min algorithms is often proposed for generating the
initial population (see, e.g., [16], [17]). A more sophisticated
approach is suggested in [18] where the population generation
takes into account the population diversity as well as task and
VM characteristics. In particular, the generation of a fraction
of the initial population is based on the critical path, that is,
the tasks on the critical path are assigned to high performance
VMs. Moreover, the paper introduces the notion of coevolution
to adjust the crossover and mutation probabilities: two types

of chromosomes are used, representing the decision solution
and the crossover and permutation probabilities, respectively.

Another issue of Genetic Algorithms refers to unfeasible
scheduling solutions, that is, solutions that do not satisfy task
precedence constraints. In this context, to obtain a feasible
solution Barrett et al. [19] apply an adjustment of an invalid
optimal schedule after crossover. Similarly, Wang et al. [20]
propose a look-ahead Genetic Algorithm that determines — by
using the Max-Min strategy based on task priority heuristics
— the task execution order in the evaluation step.

We address the problem of assessing the sensitivity of the
sub-optimal solution obtained by applying a Genetic Algo-
rithm to its control parameters. To the best of our knowledge,
this problem has never been addressed in the literature in the
framework of provisioning and scheduling in uncertain cloud
environments.

IIT. PROVISIONING AND SCHEDULING

The main steps aimed at identifying the set of cloud
resources to be provisioned and the corresponding scheduling
plan — minimizing the expected monetary cost for deploying
a parallel application under a constraint on its execution time
— are summarized as follows (see [21] for additional details):

o description of the application characteristics and de-
mands;

« description of the cloud characteristics and performance;

« probabilistic evaluation;

o formulation of the optimization problem; and

« solution of the optimization problem.

More specifically, we study the problem of provisioning and
scheduling for a parallel application .4 consisting of n tasks 77,
1 =1,2,...,n with precedence constraints, that is represented
by a Directed Acyclic Graph (DAG). As shown in Figure 1,
we assume that the tasks are grouped in sequential stages and
within a given stage the tasks can be executed in parallel.

Fig. 1: Directed Acyclic Graph of a parallel application
consisting of ten tasks.

Moreover, we consider a cloud infrastructure with m VMs,
that is, VM;, ¢ = 1,2,...,m. In general, these VMs corre-
spond to multiple instances of different VM types (e.g., micro,
medium, xlarge).

We describe the characteristics of the application (e.g.,
computation and communication demands) in terms of the
demands of its tasks and the performance of the cloud in-
frastructure (e.g., processing capacity, network bandwidth) in
terms of the performance of the individual VMs.



Since our approach towards provisioning and scheduling
aims at including in the decision process the uncertainty af-
fecting workloads and cloud environments, we model all these
features as random variables described by the corresponding
probability distributions.

Therefore, we apply a probabilistic evaluation of these
random variables. In particular, through some algebraic com-
putations, we derive the random variable t; describing the
execution time of each task T;. By properly combining the ¢;’s
according to the task precedence constraints of the application,
we obtain the overall execution time 74 (i.e., makespan) that
is itself a random variable.

The overall monetary cost C for leasing the resources
depends on the costs associated with the cloud infrastructure —
that are not affected by uncertainty — and on the task execution
times — that are random variables. Therefore, C' is a random
variable.

We formulate an optimization problem as follows:

minimize E[C]

(1
Pr(TA < d) >p

subject to

where E[C] and d denote the expected overall cost and
the deadline associated with the application execution time,
while p denotes the probability of satisfying the deadline,
thus measuring the acceptable risk. Note that our optimization
problem is an integer problem with n variables, where n is
the number of tasks the application consists of.

The solution of the optimization problem, that is, the set
of resources to be provisioned and the task scheduling plan
that minimize the expected cost under the deadline constraint,
requires the application of heuristic and meta-heuristic ap-
proaches. This is because the number of possible solutions
grows with the number of tasks of the application and the
number of VM instances of the cloud infrastructure. Hence,
to find a sub-optimal solution we apply Genetic Algorithms.

IV. GENETIC ALGORITHMS

A Genetic Algorithm is an adaptive search approach that
relies on concepts of life evolution across generations [22].
The main components of this algorithm are summarized as
follows:

« an encoding for the feasible solutions — i.e., chromosome
or individuals according to genetic terminology — of the
optimization problem;

« a population of encoded solutions;

« a function used for the evaluation of the fitness of each
solution;

« a set of genetic operators (e.g., mutation, crossover) used
for the generation of a new population from the existing
one; and

« aset of control parameters (e.g., population size, mutation
rate, crossover rate).

In particular, starting from an initial population, the algorithm
generates new populations by using a selection mechanism,

and uses crossover and mutation operators as search mecha-
nisms. At each evolutionary step, all candidate solutions are
evaluated with the aim of preserving for the next generation
the “fittest” individuals and improving the individuals by
introducing the recombination of their basic building blocks —
i.e., genes in genetic terminology. Each solution is associated
with a score that measures how good it is compared with other
solutions in the population.

The sub-optimal solutions identified by the GA depend on
several factors, such as the encoding and evaluation of the
individuals, the characteristics of the initial population and its
size, the methods adopted to generate new individuals, the
number of evolutionary steps.

In our implementation, the solution of the optimization
problem — i.e., a resource setting and the corresponding
scheduling plan — is encoded by a vector = of n integer
variables that maps the tasks of the application into the set
of provisioned VMs. Note that because of the structure of the
parallel applications considered in this study (see Fig. 1), the
Genetic Algorithm always identifies feasible scheduling plans.

For the choice of the initial population, we use two simple
bin packing heuristics, namely, List and First Fit (LFF) and
Deadline-aware Tasks Packing (DTP) [23], that take advantage
of the task parallelism of the structure of the application.
We also include the individuals associated with a sequential
schedule of the tasks on the fastest VMs and with fully parallel
schedules on the fastest and on the cheapest VMs, respectively.

Let us remark that to reduce the search space of the GA,
we remove from the pool of VMs that can be provisioned, the
VM types that cannot cope with the application deadline.

To evaluate the fitness of an individual as a solution of the
optimization problem, we consider the following function:

fla) = E[C] Pr(Ta<d)>p
REA Pr(Ty <d) <p

The solution of minimum cost is then identified by ranking the
individuals according to these scores — computed by applying
the probabilistic evaluation.

To efficiently exploit the diversity in the generation of a
new population, simple selection mechanisms are applied.
Among the various mechanisms, we implement the tournament
selection that starts by selecting two individuals with uniform
probability and then chooses the one with the highest score.
Moreover, we apply a simulated binary crossover (SBX)
operator using two parent solutions and a polynomial mutation
operator. The total number of evaluations triggers the termi-
nation of the algorithm.

As already stated, the control parameters of the GA influ-
ence the efficiency and effectiveness of the algorithm and their
tuning plays a key role. For example, mutation probability
affects the variability of the population, while crossover prob-
ability affects the exploration of the search space. Figure 2
shows the application of a single-point crossover on two solu-
tions, i.e., scheduling plans of the ten tasks of the application
of Fig. 1 on three provisioned VMs. As can be seen, this



process generates two offsprings that will be included in the
next generation.

Parent 1 ‘VMI VM4|VM2 VM3 | VM | VM3 | VM [ VM, [ VM [ VM,
Parent 2 ‘Vl\lg VM [VM; VM,|VM1 VM, VM,VMI VM [ VM,
Offspring 1 ‘VMl VM, | VM [ VM3 | VM | VM3 | VM | VM, [ VM3 [ VM,
Offspring 2 ‘\/1\12 VM, | VM; v1\11|v1\[, VM | VM | VM | VM | VM,

Fig. 2: Example of a single-point crossover of two scheduling
plans.

In the next section, we present a sensitivity analysis per-
formed for assessing the role of the control parameters,
namely, population size, number of tournaments, crossover and
mutation probabilities, during the evolutionary process.

V. SENSITIVITY ANALYSIS

To evaluate the sensitivity of the sub-optimal solutions
identified by the GA to its control parameters we perform
several experiments varying these parameters. In what follows,
we describe the experimental environment and setup and we
discuss the results of the tuning actions.

A. Experimental environment

Experiments have been performed with customized exten-
sions of the Cloudsim simulation toolkit [24]. In particular, our
extensions rely on jMetal framework [25] for implementing
GAs and on the distr package [26] of R for computing
probability distributions of the random variables associated
with the application and cloud characteristics.

B. Experimental setup

In our experiments we model an application consisting of
two parallel stages consisting of 32 parallel tasks in the first
stage and eight parallel tasks in the second stage. The overall
demands of the application are as follows:

o Input data size: 1 TB

o First stage processing: 102 x 10% million of instructions

o Exchanged data size: 500 GB

o Second stage processing: 256 x 107 million of instructions

e Output data size: 500 GB
More specifically, data and processing are evenly distributed
among the tasks. Each task of the first stage reads its portion
of input data from a storage device, processes these data, and
exchanges the results of its processing with all tasks of the
second stage. In turn, second stage tasks process their data
and write their output data to a storage device.

The deadline associated to the application execution time
— set to 36 hours — has to be satisfied with a probability p
greater or equal to 0.8.

The characteristics of the multi-cloud infrastructure mod-
eled in our experiments are presented in Table I.

TABLE I: Characteristics of the cloud infrastructure.

. Cost Proc. capacity | Bandwidth
Provider YMType | \uspm) | (MIPS x 10°] [Mbps]
micro 0.040 1.95 300

small 0.080 391 300

medium 0.320 15.63 600

Public cloud A large 0.520 25.38 800
xlarge 0.640 31.25 800

x2large 1.040 51.02 1,100

x3large 2.080 101.63 1,100

micro 0.045 1.95 300

small 0.090 391 300

Public cloud B medium 0.180 7.81 600
large 0.369 16.03 800

xlarge 0.774 33.67 1,100

Private cloud Smc-{ll 0.001 1.95 800
medium 0.001 7.81 800

For each VM type the table lists the leasing cost together
with the processing capacity — expressed in MIPS — and the
nominal bandwidth. Moreover, we assume the data transfer
rate to/from storage devices equal to the corresponding VM
bandwidth.

Note that to model uncertainty, we consider cloud character-
istics represented by a Half-Normal distribution characterized
by a variability factor — that is the relative deviation with
respect to the nominal performance of the VMs — equal to
0.5. On the contrary, we assume the characteristics of the
application not affected by any uncertainty.

C. Experimental results

In this section we present the results of the experiments
performed to assess the sensitivity of the control parameters.
In particular, we analyze the behavior of the expected cost of
the candidate solution during the evolutionary process of the
GA using the initial population defined in Sect. I'V.

The default settings for the control parameters used in the
experiments are as follows:

o Population size: 20 individuals

¢ Selection process: 5 tournaments
o Crossover probability: 0.9

e Mutation probability: 0.03

Since GAs rely on randomness, for each experiment we
perform ten repetitions varying the seed of the random number
generator.

The behavior of the expected cost with the default settings —
as function of the number of evaluations of the fitness function
— is shown in Figure 3. In particular, each of the ten curves
corresponds to an experiment with a different initial random
seed. As can be seen, for all experiments, the initial expected
cost is equal to 157.16 USD, which corresponds to the cost of
the solution identified by the Deadline-aware Tasks Packing
heuristic. It is interesting to notice that all solutions improve
this heuristic and tend to an expected cost of approximately
151 USD as the number of evaluations increases. Moreover,
during the evolutionary process we identify three different
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Fig. 3: Expected cost with the GA default settings as a function
of the number of evaluations of the fitness function. The colors
correspond to ten experiments with different random seeds.
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Fig. 4: Expected cost as a function of the number of evalua-
tions of the fitness function varying the population size.

behaviors. In details, we detect stagnation periods where the
solution does not improve for many evaluations, frequent
events where the solution slightly improves, and rare events
where the solution significantly improves due to “favorable”
crossovers or mutations. The differences in the curves denote
the impact of randomness especially at the very beginning of
the process.

To study the sensitivity of the GA control parameters, we
vary one parameter at a time starting from the default settings.
In Figures 4-8 the solid curves represent the mean values of the
expected cost computed over ten repetitions and the colored
areas represent a 95% confidence interval around the mean —
computed using bootstrapping method.

In detail, by varying the population size, i.e., 10, 20, 50
and 100 individuals, we notice that, despite a slower start, the
population with 50 individuals leads faster and with narrow
confidence intervals to an expected cost of 150.93 USD (see
Fig. 4).

Moreover, by varying the number of tournaments of the
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Fig. 5: Expected cost as a function of the number of evalu-
ations of the fitness function varying the number of tourna-
ments.
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Fig. 6: Expected cost as a function of the number of evalua-
tions of the fitness function varying the crossover probability.

selection process, i.e., equal to 2, 5 and 10, we investigate its
impact on the expected cost. As can be seen in Figure 5 the
evolution of the solution with two tournaments performs better
than the others, leading to an expected cost of 151.04 USD.

The analysis of the crossover and mutation probabilities
(see Figs. 6 and 7) shows that for these settings the largest
probabilities (i.e., 0.99 and 0.1, respectively) provide cheapest
solutions.

Finally, we study in Figure 8 the benefits of including in the
initial population individuals generated by ad hoc heuristics
(i.e., DTP and LFF). As expected, these heuristics play an
important role. Without their contribution, the expected cost
starts from 183.24 USD - corresponding to a fully parallel
schedule on the fastest VMs — and after 5,000 evaluations it
reaches a value even larger than the cost of the DTP solution
(i.e., 160.55USD vs. 157.16 USD). Therefore, the choice of
the initial population has the strongest impact on the GA
performance. Nevertheless, it is also important to take into
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account the mutual interactions of the control parameters.

VI. CONCLUSIONS

Provisioning and scheduling in cloud environments are
challenging issues that become even more challenging in pres-
ence of cloud uncertainty. To devise cost-effective solutions,
it is necessary to take into account the characteristics of
the applications and of the cloud infrastructure. For such a
purpose, optimization problems are formulated, whose goal is
to derive resource settings that minimize parameters — such as
monetary cost, execution time — subject to constraints — such
as deadline, budget. Heuristic and meta-heuristic approaches
can be applied to derive a feasible solution of optimization
problems.

We addressed the problem of resource provisioning and
task scheduling using a probabilistic approach to model the
uncertainty affecting workloads and cloud environments. In
particular, we considered parallel applications consisting of

tasks with precedence constraints. The tasks are grouped in
sequential stages and within each stage they can be executed
in parallel. We modeled the application execution time and
the overall monetary cost as random variables — described
by the corresponding probability distributions. We formulated
an optimization problem and applied a Genetic Algorithm to
obtain a sub-optimal solution, that is, the set of resources to
be provisioned and the task scheduling plan that minimize
the expected cost under the deadline constraint. To assess the
influence of control parameters, we performed a preliminary
sensitivity analysis of the solutions as a function of the
evolutionary process. This analysis has shown that the choice
of the initial population is very critical in the framework of
provisioning and scheduling in uncertain cloud environments.

Future research directions will focus on a finer tuning of the
control parameters of the Genetic Algorithm, and in particular
on the investigation of their role and mutual relationships.
Moreover, we plan to extend optimization heuristics to cope
with workloads having different characteristics, such as more
complex workflows and interactive applications.
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